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The interfacial curvature free energy is shown to cause a significant barrier height correction to the
classical nucleation rate. This correction is found to be temperature dependent, but independent of
nucleus size. Density functional~DF! calculations are presented for a nonuniform spherical droplet
model of the nucleus. Calculations for the surface tension, as a function of nucleus size, and for the
interfacial curvature free energy support theoretical predictions and provide an explanation for
systematic discrepancies between classical and DF nucleation theories and between the classical
theory and experiment. ©1997 American Institute of Physics.@S0021-9606~97!51912-X#
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Measurements of vapor-liquid nucleation rate ha
shown systematic departure from predictions of class
nucleation theory~CNT!. In particular, it has been observe
that although the CNT accurately describes the slope w
the logarithm of the nucleation rate is plotted vs supersa
ration ~S! at fixed temperature, a temperature dependent
rection to the classical rate is needed to bring theory in
with experiment.1 Recent theoretical results yield
molecular-based approach to interpretation of the slope m
surements in terms of the number of molecules in the crit
nucleus.2 Thus the departure from CNT shows up largely
a shift in nucleation rate and less as a deviation in nucl
size. Although this partial success has been considered q
remarkable given the crude approximations of CNT, the r
sons for it have remained a mystery.

The molecular-based approach has been used to o
general free-energy scaling properties of a critical nucl
under the assumption that the critical nucleus size is given
the Kelvin relation, as in the classical theory.3 It was found
that the nucleation barrier height can differ from the CN
prediction by a temperature-dependent amountD(T) that is
independent of nucleus size. These results are supporte
density functional~DF! calculations and are consistent wi
the systematic discrepancies observed between CNT and
periment mentioned above.1,3 However, the molecular basi
for persistence of the Kelvin relation beyond the capilla
drop model of CNT has not been determined, nor has
physical basis been given for the barrier height displacem
D(T).

In the present communication we address these is
using a nonuniform spherical droplet model of the nucle
Motivated by a recent study of liquid-vapor states of inh
mogeneous fluids by Romero-Rochin and Percus,4 we iden-
tify the barrier height displacement with the interfacial cu
5284 J. Chem. Phys. 106 (12), 22 March 1997 0021-9606/97
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vature free energy and use density functional calculation
confirm the predicted results. These authors obtained the
lowing result for the surface free energyVs of a spherical
drop:4

Qs.4pR2 Fg`1
ks
R2 G1O~jb /R!, ~1!

whereg` is the bulk surface tension for a flat interface a
ks is the rigidity coefficient (4pks is the interfacial curvature
free energy!. The last term contains corrections on the ord
of the widthjb of the interfacial profile divided by the radiu
R of the drop. We will show that Eq.~1! itself follows from
the Kelvin relation and that the latter provides a nonpertu
tive model for the higher order terms. Thus the independ
foundation for Eq.~1! described in Ref. 4 is shown here to b
consistent with the Kelvin relation and indicative of the v
lidity of its extension to nucleation theory beyond the cla
sical capillary drop model.

Consider, as two models of the critical nucleus, a clas
cal capillary drop and a diffuse drop held in unstable eq
librium with a supersaturated vapor at temperatureT. In the
capillary model of CNT the nucleus is represented as
spherical drop having properties of a bulk sample of
nucleated phase, including a curvature-independent sur
tensiong` and uniform densityr l .

5 For the diffuse nucleus
we allow the more general case of a nonuniform spher
drop whose density profile is shown schematically in Fig.
Analytic results for the diffuse nucleus will be obtained u
ing Gibbs dividing surface methods.5,6 The dividing surface
is a mathematical construct that can be placed at any ra
R and does not affect the physical properties of the dr
Thus the pressure difference given by the generali
Laplace relation,5
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Pl2Pn5
2g~R!

R
1F ]g

]R G , ~2!

wherePl andPn are the pressures at the center and exte
to the drop, respectively, is independent ofR. g~R! is the
surface tension for the dividing surface located at the rad
R @see also Eq.~7! below#, and the square-bracketed ter
gives the derivative ofg with respect to a mathematical dis
placement of the dividing surface. The bracketed term v
ishes for placement of the dividing surface at the surface
tension (R5Rs) where g~R! assumes its minimum value
gs . In addition to the surface of tension we will requi
properties at the equimolecular dividing surface (R5Re) de-
fined by the equal areas construction of Fig. 1 and charac
ized by the property that the formal derivative in Eq.~1!
equals]ge /]Re , the partial derivative for the actual radiu
dependence at constant temperature.5

The generalized Kelvin relation for an incompressib
nucleus follows from Eq.~2! upon equating the chemica
potentials of the vapor and the bulk liquid at the center of
drop:5

Pl2Pn5r lDm2~Pn2P`!, ~3!

whereP` is the equilibrium vapor pressure of the condens
phase for a planar surface andDm5mn2m` is the differ-
ence between the chemical potential of the supersatur
vapor and the bulk condensed phase driving the ph
change. ThePn2P` term corrects for nonequilibrium vapo
density. Returning to the two drop models, we see from
~3! that if the values ofr l , mn , andPn are specified, the
value of Pl is determined. We will assume that the co
region of the diffuse drop remains characterized by the b
phase densityr l . Then for fixed vapor pressure,Pl must not
only be independent of the choice of dividing surface used
Eq. ~2!, but independent as well of which model~classical
capillary or diffuse interface! is used to represent the dro
Thus we obtain the important equalities:

Pl2Pn5
2g`

R*
5

2

Re
S ge1

Re

2

]ge

]Re
D5

2gs

Rs
, ~4!

FIG. 1. Schematic density profile in the diffuse droplet model. The das
vertical line marks the equimolecular dividing surface defined such
(r l2rn)Ve54p(Re)

3(r l2rn)/3 is equal to the integrated excess densit
J. Chem. Phys., Vol. 106,
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whereR* is the radius of the critical nucleus in the capilla
drop model of CNT,ge[g(Re), and bothRe andRs refer to
the diffuse nucleus of critical size. The first equality of Eq
~4! is the classical Laplace relation. The second and th
equalities result on settingR5Re and R5Rs in Eq. ~2!.
Equation ~4! is based solely on the assumption that t
nucleus has an incompressible core of density equal to
of the bulk phase. The Kelvin relation forR* follows from
Eq. ~3! and the classical Laplace relation:

R*52g` / @r lDm2~Pn2P`!#. ~5!

We now investigate the assumption@Eq. ~6a!# that Eq.
~5! can be used to predict the critical radiusRe of the diffuse
droplet model. The following equalities are equivale
through Eqs.~4!:

Re5R* , ~6a!

ge1
Re

2

]ge

]Re
5g`, ~6b!

g`

Re
5

gs

Rs
. ~6c!

We emphasize that Eqs.~6a!–~6c! satisfy, but are not conse
quences of Eq.~4!. However, if any member from the se
Eqs. ~6a!–~6c!, holds, the others hold likewise by virtue o
their equivalence through Eq.~4!. For example, Eq.~6a! is a
restatement of the homogeneity ansatz of Ref. 3. Equat
~6b! and ~6c! are, therefore, equivalent expressions of t
homogeneity ansatz through Eq.~4!, as are Eqs.~6d! and
~6e!. Integration of Eq.~6b! at constant temperature gives

Re
2ge5Re

2g`1ks~T!.

@Hereks is simply a constant of integration; it is shown b
low that ks is the rigidity coefficient of Eq.~1!.# Thus we
obtain an explicit form for the curvature dependence ofge ,
which is also equivalent to Eq.~6a!:

ge5g`1
ks
Re
2 . ~6d!

The pair of conditionsge5g` and]ge /]Re50 assumed in
CNT5 is seen to be a special case of Eqs.~6! for which
ks50. Before discussingks, we show that Eqs.~6! imply a
difference in the nucleation barrier heights predicted us
the classical and diffuse droplet models that is independ
of Re .

The dependence ofg~R! on dividing surface location is
given by Ono and Kondo:6

g~R!5
Rs
2gs

3R2 1
2gsR

3Rs
. ~7!

Evaluating Eq.~7! atR5Re and using Eq.~6c! to eliminate
gs gives:

g`5
3geRe

3

Rs
312Re

3 . ~8!

d
t
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5286 Letters to the Editor
The nucleation barrier height in the diffuse droplet mode
most simply expressed in terms of conditions at the surf
of tension:5

W*5
4pRs

2gs

3
54pRe

2ge S Rs
3

Rs
312Re

3 D , ~9!

which we have rewritten@second equality in Eq.~9!# using
Eqs.~6c! and~8!. Similarly for the barrier height in the clas
sical theory we obtain

WCNT* 5
4pRe

2g`

3
54pRe

2ge S Re
3

Rs
312Re

3 D . ~10!

The first equality is the Gibbs expression for the class
barrier height, after substitutingRe for R* using Eq.~6a!,
and the second equality uses Eq.~8!. Subtracting Eq.~9!
from Eq. ~10! and using Eq.~8! we obtain:

WCNT* 2W*54pRe
2~g`2ge!. ~11!

From Eqs.~11! and~6d! we obtain, as an important corollar
of assumingRe5R* , that the difference between the clas
cal and diffuse droplet model nucleation barrier heights
independent ofRe :

WCNT* 2W*524pks[D~T!. ~6e!

Note that the converse also applies: Since Eq.~6d!, and
therefore Eq.~6a!, follows from Eqs.~11! and ~6e!, a con-
stant barrier height shift impliesRe5R* .

Density functional calculations both for a flat interfa
~Dm50! and for finite size drops were carried out using t
Lennard-Jones argon model of Zeng and Oxtoby7 as previ-
ously described.3 The results shown in Fig. 2 confirm Eq
~6d! and yield the temperature dependent values forks given
in the caption. Figure 2 was constructed forRe equal toR*
from Eq. ~5!, andge values from Eq.~11! with calculated
values forW* from the DF model.

The rate of nucleation is generally expressed
exponent-prefactor form asJ5Kexp(2W* /kT). Thus Eq.
~6e! yields a change in nucleation rate of th
form J/JCNT5(K/KCNT)exp@(WCNT* 2W* )/kT#5(K/KCNT)
3 exp(24pks/kT). To illustrate the size of the effect that w
are considering, assume for the moment that the prefact
unchanged from its classical valueKCNT. Then for
ks52kT the rate correction isJ/JCNT. exp(4p)'33105

~see Fig. 2 for the range of values ofks computed in the DF
model!. Temperature dependent corrections measured
Adamset al.,1 albeit for a different material~nonane!, are in
the range 102<J/JCNT<109. Our results suggest that nucle
ation rate measurements can provide experimental dete
nation of the interfacial curvature free energy, 4pks
52D(T). Accurate determination of this quantity, throug
comparison between experimental rate measurements
the capillary drop model of classical theory, will require
consistent treatment of the prefactor correction,K/KCNT. Re-
cent estimates ofK/KCNT, including the 1/S factor8 and a
revised estimate for the replacement free energy factor~ap-
proximately 104),9 when combined suggest values f
K/KCNT of order 10

3.
J. Chem. Phys., Vol. 106,
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Finally, we derive the surface free-energyVs from the
Kelvin radius assumption@Eq. ~6a! and its equivalents# and
identify ks with the rigidity coefficient. We obtain:

Vs53W*54pRs
2gs54p~Re

212ks!

54pRe
2 S g`1

ks
Re
2 D 18pks . ~12!

The first two equalities are from Ref. 5, the third equal
follows Eqs.~6e!, ~9!, and~10!, and the last equality uses Eq
~6d!. From the third equality of Eq.~12! and settingjb
[Re2Rs , which is the Tolman length,5 we obtain a cubic
equation injb :

Vs54pRe
2 S g`1

ks
Re
2 D

28pRe
2g` F S jb

Re
D 2 S jb

Re
D 21 1

3 S jb
Re

D 3G ~13!

as an explicit, nonpertubative, result forVs including correc-
tion for the finite thickness of the interface. Equation~13!

FIG. 2. Density functional results forge ~markers! and comparison with Eq.
~6d! ~lines!. Temperatures are given in units ofe/k wheree is the charac-
teristic energy for the Lennard-Jones system of Ref. 7 andk is the Boltz-
mann constant.Re is in units ofs, which is the characteristic Lennard-Jone
distance, andge is in units of e/s2. From the linear fits we obtain
ks521.366e522.276kT at T50.6,ks521.261e521.576kT at T50.8,
ks521.085 e521.085 kT at T51.0, andks520.901 e520.819 kT at
T51.1.
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5287Letters to the Editor
has the same structure as Eq.~1! with the identifications
R5Re ~as in Ref. 10! andks(T) equal to the rigidity coeffi-
cient.

The unit-area elastic curvature free-energy (ks/R
2),

which is neglected in classical nucleation theory, has b
interpreted as arising from the square Laplacian term i
local density expansion for the free energy of the nonunifo
drop4,11 just as the surface tension originates from the squ
gradient term.11,12Accordingly, the present theory, based
Eqs.~4! and ~6a!, seems to incorporate extension of squa
gradient formulations of classical nucleation theory12 to in-
clude the square Laplacian terms. The latter, from the p
ceding analysis, are predicted to shift the nucleation bar
height without affecting the size of the critical nucleus itse
Further analysis of the present model for diffuse dropl
requires evaluation of higher-order terms in Eq.~1! for com-
parison with the predictions of Eq.~13!. Nonetheless, the
present model@represented by Eq.~6d!# is supported by the
results of DF calculations~Fig. 2! even though the interfacia
profiles for the cases studied, particularly at the smaller v
ues ofRe , were found to be quite broad~e.g., values of
jb /Re approaching 0.2 atT50.8!. The breakdown, sug
gested in Fig. 2 at the smallest nucleus size, appears t
more related to compressibility of the Lennard-Jones ar
nucleus13 and to the fact that the center density of t
nucleus starts to deviate considerably from the bulk liq
density for the smallest clusters@in violation of assumptions
used in Eq.~4!#.
J. Chem. Phys., Vol. 106,
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